
ETC 2420/5242 Lab 9 2017
SOLUTION

Week 9

Purpose

This lab is related to Bayesian thinking, to compute conditional probabilities and posterior probabilities.

Warmup

Watch the video “A visual guide to Bayesian thinking”. And also the snippet from “Big Bang Theory”.

Exercise 1 (4pts)

A situation where Bayes theorem is routinely used is the spam filter in your mail server. The message is
scrutinized for the appearance of key words which make it likely that the message is spam. Let us describe
how one of these filters might work. We imagine that the evidence for spam is that the subject message of
the mail contains the word “easy”. We define events spam (the message is spam) and easy (the subject line
contains this word).

From previous examination of my mail I have learned that 70% of emails are spam, 2% of spam email have
“easy” in the subject line, and .1% of non-spam emails have this word in the subject line.

Use Bayes Theorem to tackle to find P (spam|free).

Let A=mail is spam, B=mail has “easy” in subject. What is

a. P(A)? 0.70
b. P(B|A)? 0.02
c. P(B)? 0.0143
d. P(A|B)? 0.7x0.02/0.0143 = 0.4903

Exercise 2 (8pts)

For the dice problem explained in the lecture, write down the problem in tabular format, and specify P(D).

H P(H) P(D|H) P(H)P(D|H) P(H|D)

4 1/5 if D<5 1/4
else 0

if D<5 1/20 else
0

if D<5 0.5
else 0

6 1/5 if D<7 1/6
else 0

if D<7 1/30 else
0

if D<5
0.333, else
if
5<=D<7
0.417, else
0
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H P(H) P(D|H) P(H)P(D|H) P(H|D)

8 1/5 if D<9 1/8
else 0

if D<9 1/40 else
0

if D<5
0.25, else
if
5<=D<7
0.3125,
else if
7<=D<9
0.417 else
0

12 1/5 if D<13
1/12 else 0

if D<13 1/60 else
0

if D<5
0.167, else
if
5<=D<7
0.208, else
if
7<=D<9
0.278, else
if
9<=D<13
0.333, else
0

20 1/5 1/20 1/100 if D<5
0.100, else
if
5<=D<7
0.125, else
if
7<=D<9
0.167, else
if
9<=D<13
0.25, else
0.5

P(D) has different probabilities depending on the frequency of the numbers, 0.1, 0.1, 0.1, 0.1, 0.08, 0.08, 0.06,
0.06, 0.04, 0.04, 0.04, 0.04, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02.

Exercise 3 (3pts)

Suppose there were 3 20-side dice. Re-do the calculations for P(H|D) if a 6 is thrown. What is P(D)? Prior?
Give an explanation for why the probability of the 20-sided dice increases.

P(D) = 0.0777778, 0.0777778, 0.0777778, 0.0777778, 0.0666667, 0.0666667, 0.0555556, 0.0555556, 0.0444444,
0.0444444, 0.0444444, 0.0444444, 0.0333333, 0.0333333, 0.0333333, 0.0333333, 0.0333333, 0.0333333, 0.0333333,
0.0333333.

prior is now P (4) = 1/7, P (6) = 1/7, P (8) = 1/7, P (12) = 1/7, P (20) = 3/7.
dice <- c(4, 6, 8, 12, 20)
prior <- c(rep(1/7, 4), 3/7)
prob_D <- c(rep(7/90, 4), rep(6/90, 2), rep(5/90, 2),

rep(4/90, 4), rep(3/90, 8))
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dice_likelihood <- function(x, dice) {
if (x>dice)

l <- 0
else

l <- 1/dice
return(l)

}
dice_posterior <- function(x, dice, prior, prob_D) {

post <- NULL
pD <- prod(prob_D[x])
for (i in 1:length(dice)) {

post <- c(post, prior[i]*dice_likelihood(x, dice[i])/pD)
}
df <- data.frame(dice, post=post/sum(post))
return(df)

}
dice_posterior(6, dice, prior, prob_D)
# dice post
# 1 4 0.0000000
# 2 6 0.3174603
# 3 8 0.2380952
# 4 12 0.1587302
# 5 20 0.2857143

There are more 20-sided dice, so it is understandable that even though 6 is small, there's
a higher chance that it came from one of the 20-sided dice.

Exercise 4 (5pts)

In the lecture we used a power law prior to dampen down the estimate of the number of locomotives. Instead
fit a N(µ, 100) (σ = 100) prior. Plot the posterior distributions.
loco_likelihood <- function(x, loco){

if (x>loco)
l <- 0

else
l <- 1/loco

}
l <- NULL
for (i in 1:1000)

l <- c(l, loco_likelihood(60, i))
df <- data.frame(hyp=1:1000, l, post=l/sum(l))
alpha=0.9
prior <- (1/1:1000)^alpha
df <- data.frame(hyp=1:1000, l, unif=l/sum(l))
df$power <- l*prior
df$power <- df$power/sum(df$power)
prior2 <- exp(-(1:1000/100)^2)/sqrt(2*pi)
df$norm <- l*prior2
df$norm <- df$norm/sum(df$norm)
df_m <- df %>% gather(prior, posterior, unif, power, norm)
ggplot(df_m, aes(x=hyp, y=posterior, color=prior)) + geom_line() + xlab("Number of trains") +

ylab("Probability") +
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scale_color_brewer(palette="Dark2")
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Exercise 5 (12pts)

It helps to read the lecture notes to find the equations that you need for this question.

a. Suppose we have a sample X1, . . . , Xn ∼ N(θ, 3), σ = 3.

• (2pts) Write down the likelihood function.

l(x1, . . . , xn | θ) =
n∏

i=1
exp

{
−1

2

(
xi − θ

3

)2
}

= exp
{
−n2

(
x̄− θ

3

)2
}

• (2pts) What is the MLE estimate θ̂MLE, theoretically? (If we actually had a sample, we could use the
function fitdistr from the MASS library to estimate it.)

X̄

• (2pts) If we have reason to believe that θ is not a fixed value, but can vary according to θ ∼ N(µ, τ),
what is the posterior distribution, π(θ|x1, . . . , xn)?

Plug in 9 instead of σ2 in the lecture notes

π(θ|x1, ..., xn) = π(θ)l(x1, . . . , xn | θ)

= exp
{
−1

2

(
n

9 + 1
τ2

)−1(
θ − nx̄/9 + µ/τ2

n/9 + 1/τ2

)2}
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• (2pts) What is the posterior mean E[θ|x1, . . . , xn]?

nx̄/9 + µ/τ2

n/9 + 1/τ2

b. Suppose the “true” value is θ = 2 (at one instance of time to allow for simulation). Consider (1) µ = 5
and τ = 1, and (2) µ = 2 and τ = 2. For n ∈ {1, 10, 20, 50, 100, 10000}. Use Nat’s shiny app for this.

• Simulate a data set consisting of n observations
• Plot on the same graphic π(θ), π(θ|x1, . . . , xn) and θ̂MLE.

c. (4 pts) Discuss the behavior of π(θ|x1, . . . , xn) as n increases and the impact of the prior distribution.

As n increases the prior has less influence on the parameter estimates. In the first
example the prior is very different from the "true" value, and for small sample sizes
pulls the estimates away from this true value. In the second example, the prior is quite
close to the "true" value, and this is reflected in the posterior distributions being
centered around the "true" value regardless of the sample size.

Exercise 6 (8pts)

Suppose your prior distribution for θ, the proportion of Australians who will vote yes on the Marriage Equality
Postal Survey, is beta with mean 0.5 and standard deviation 0.4.

a. (2pts) What are the parameters α and β of your prior distribution. Plot the prior density function.
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b. (2pts) Why might it be reasonable to consider θ in a Bayesian way?

People might change their viewpoint depending on information available when they are
asked, or when they turn their vote in.

c. (4pts) A random sample of 1000 Australians is taken, and 65% say they will vote “yes”. What are the
posterior mean and variance for θ? Plot the posterior density function.

Mean and variance of a beta distribution (Beta(a, b)), are given by a
a+b and ab

(a+b)2(a+b+1) .

Posterior is given by Beta(a+650, b+350)
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a <- 0.5+650
b <- 0.4+1000-650
a/(a+b)
# [1] 0.6499151
a*b/((a+b)^2*(a+b+1))
# [1] 0.000227094
betabin_posterior <- function(x, n, a, b) {

p <- seq(0, 1, 0.01)
post <- dbeta(p, a+x, b+n-x)
df <- data.frame(p, post)
return(df)

}
df <- betabin_posterior(650, 1000, 0.5, 0.4)
ggplot(df, aes(x=p, y=post)) + geom_line()
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TURN IN

• Your .Rmd file
• Your html file that results from knitting the Rmd.
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