+ - 0:00:00
Notes for current slide
Notes for next slide

Statistical Thinking using Randomisation and Simulation

Generalised Linear Models

Di Cook University

W6.C2

1 / 26

Generalised linear models

  • Overview
  • Types
  • Assumptions
  • Fitting
  • Examples
2 / 26

Overview

  • GLMs are a broad class of models for fitting different types of response variables distributions.
  • The multiple linear regression model is a special case.
3 / 26

Three components

  • Random Component: probability distribution of the response variable
  • Systematic Component: explanatory variables
  • Link function: describes the relaionship between the random and systematic components
4 / 26

Multiple linear regression

yi=β0+β1x1+β2x2+ε   or   E(Yi)=β0+β1x1+β2x2

  • Random component: yi has a normal distribution, and so eiN(0,σ2)
  • Systematic component: β0+β1x1+β2x2
  • Link function: identity, just the systematic component
5 / 26

Poisson regression

yi=exp(β0+β1x1+β2x2)+ε

  • yi takes integer values, 0, 1, 2, ...
  • Link function: ln(μ), name=log. (Think of μ as y^.)
6 / 26

Bernouilli, binomial regression

yi=exp(β0+β1x1+β2x2)1+exp(β0+β1x1+β2x2)+ε

  • yi takes integer values, {0,1} (bernouilli), {0,1,...,n} (binomial)
  • Let μ=exp(β0+β1x1+β2x2)1+exp(β0+β1x1+β2x2), link function is lnμ1μ, name=logit
7 / 26

Assumptions

  • The data y1,y2,...,yn are independently distributed, i.e., cases are independent.
  • The dependent variable yi does NOT need to be normally distributed, but it typically assumes a distribution from an exponential family (e.g. binomial, Poisson, multinomial, normal,...)
  • Linear relationship between the transformed response (see examples below)
  • Explanatory variables can be transformations of original variables
  • Homogeneity of variance does NOT need to be satisfied for original units, but it should be still true on the transformed response scale
  • Uses maximum likelihood estimation (MLE) to estimate the parameters
  • Goodness-of-fit measures rely on sufficiently large samples
8 / 26

Example: Olympics medal tally

  • Model medal counts on log_GDP
  • Medal counts = integer, which suggests using a Poisson model.

9 / 26

Model fit and what it looks like

oly_glm <- glm(M2012~GDP_log, data=oly_gdp2012,
family=poisson(link=log))
summary(oly_glm)$coefficients
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -13.2 0.538 -24 3.6e-132
#> GDP_log 1.3 0.045 30 6.8e-198

10 / 26

Your turn

Write down the formula of the fitted model.

11 / 26

Your turn

Write down the formula of the fitted model. log(M2012)^=13.2+1.3GDP.log

11 / 26

Model fit

#>
#> Call:
#> glm(formula = M2012 ~ GDP_log, family = poisson(link = log),
#> data = oly_gdp2012)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -4.80 -2.22 -0.36 1.07 8.55
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -13.1691 0.5383 -24.5 <2e-16 ***
#> GDP_log 1.3406 0.0447 30.0 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for poisson family taken to be 1)
#>
#> Null deviance: 1567.70 on 84 degrees of freedom
#> Residual deviance: 545.92 on 83 degrees of freedom
#> AIC: 845.7
#>
#> Number of Fisher Scoring iterations: 5

The difference between the null and residual deviance is substantial, suggesting a good fit.

12 / 26

Residual plots

Heteroskedasticity in residuals. One fairly large residual.

13 / 26

Influence statistics

#> .rownames .cooksd .resid
#> 1 RussianFed 1.9e+00 8.553
#> 2 China 1.5e+00 3.743
#> 3 UnitedStates 8.3e-01 1.468
#> 4 GreatBritain 8.0e-01 5.232
#> 5 Jamaica 4.4e-01 5.267
#> 6 India 2.6e-01 -4.800
#> 7 Japan 2.5e-01 -2.010
#> 8 Cuba 2.4e-01 4.215
#> 9 Ukraine 2.3e-01 4.270
#> 10 Kenya 1.9e-01 3.802
#> 11 Belarus 1.6e-01 3.535
#> 12 Hungary 1.5e-01 3.621
#> 13 Brazil 1.5e-01 -2.862
#> 14 Georgia 1.3e-01 3.219
#> 15 Indonesia 1.2e-01 -4.563
#> 16 Mexico 9.8e-02 -3.444
#> 17 SaudiArabia 9.2e-02 -4.388
#> 18 Australia 7.6e-02 2.211
#> 19 Azerbaijan 7.5e-02 2.584
#> 20 Mongolia 7.3e-02 2.612
#> 21 ChineseTaipei 7.0e-02 -3.680
#> 22 Turkey 6.5e-02 -3.179
#> 23 Switzerland 6.5e-02 -3.293
#> 24 Ethiopia 6.2e-02 2.385
#> 25 Belgium 6.0e-02 -3.294
#> 26 Venezuela 5.8e-02 -3.498
#> 27 NewZealand 5.0e-02 2.211
#> 28 HongKongChina 4.9e-02 -3.191
#> 29 Portugal 4.9e-02 -3.164
#> 30 Greece 4.5e-02 -2.932
#> 31 Kazakhstan 4.4e-02 2.100
#> 32 Norway 4.3e-02 -2.700
#> 33 DPRKorea 4.2e-02 2.020
#> 34 Algeria 4.0e-02 -2.815
#> 35 Singapore 3.9e-02 -2.705
#> 36 Argentina 3.8e-02 -2.534
#> 37 Kuwait 3.8e-02 -2.731
#> 38 Thailand 3.7e-02 -2.566
#> 39 Malaysia 3.7e-02 -2.602
#> 40 Canada 3.6e-02 -1.607
#> 41 Egypt 3.4e-02 -2.512
#> 42 Korea 3.3e-02 1.635
#> 43 Finland 2.9e-02 -2.222
#> 44 Spain 2.6e-02 -1.463
#> 45 Qatar 2.6e-02 -2.126
#> 46 Morocco 2.4e-02 -2.147
#> 47 Germany 2.1e-02 0.754
#> 48 SouthAfrica 1.9e-02 -1.705
#> 49 Sweden 1.8e-02 -1.586
#> 50 Armenia 1.4e-02 1.291
#> 51 TrinidadTobago 1.4e-02 1.234
#> 52 PuertoRico 1.2e-02 -1.390
#> 53 Guatemala 1.1e-02 -1.396
#> 54 Croatia 1.1e-02 1.073
#> 55 Lithuania 1.0e-02 1.072
#> 56 Ireland 7.5e-03 -1.044
#> 57 CzechRepublic 5.5e-03 0.804
#> 58 Grenada 5.2e-03 1.025
#> 59 Netherlands 5.2e-03 0.726
#> 60 Poland 5.0e-03 -0.817
#> 61 Rep.ofMoldova 4.9e-03 0.827
#> 62 Romania 4.8e-03 0.750
#> 63 Bahrain 4.8e-03 -0.925
#> 64 Cyprus 4.6e-03 -0.904
#> 65 DominicanRep. 4.4e-03 -0.822
#> 66 Bulgaria 4.4e-03 -0.820
#> 67 Uzbekistan 2.6e-03 0.555
#> 68 Serbia 2.5e-03 0.550
#> 69 Afghanistan 2.3e-03 -0.637
#> 70 Colombia 2.0e-03 -0.518
#> 71 Gabon 1.9e-03 -0.588
#> 72 Botswana 1.9e-03 -0.575
#> 73 Italy 1.8e-03 -0.304
#> 74 Uganda 1.7e-03 -0.558
#> 75 Slovenia 1.1e-03 0.359
#> 76 Slovakia 9.6e-04 -0.360
#> 77 Denmark 8.2e-04 -0.330
#> 78 Montenegro 3.6e-04 0.257
#> 79 Latvia 2.4e-04 -0.189
#> 80 Tunisia 8.8e-05 -0.109
#> 81 Bahamas 7.5e-05 -0.116
#> 82 France 4.7e-05 0.042
#> 83 Iran 3.5e-06 -0.021
#> 84 Estonia 3.5e-06 -0.022
#> 85 Tajikistan 8.3e-07 -0.012

Largest Cooks D values enough to have some concerns about the influence that Russian Federation and China have on the model fit. Should re-fit without these two cases.

14 / 26

Prediction from the model

aus <- oly_gdp2012 %>% filter(Code == "AUS")
predict(oly_glm, aus)
#> 1
#> 3.2

WAIT! What??? Australia earned more than 3 medals in 2012. Either the model is terrible, or we've made a mistake!

15 / 26

Prediction from the model

aus <- oly_gdp2012 %>% filter(Code == "AUS")
predict(oly_glm, aus)
#> 1
#> 3.2

WAIT! What??? Australia earned more than 3 medals in 2012. Either the model is terrible, or we've made a mistake!

aus <- oly_gdp2012 %>% filter(Code == "AUS")
predict(oly_glm, aus, type="response")
#> 1
#> 23
15 / 26

Prediction from the model

aus <- oly_gdp2012 %>% filter(Code == "AUS")
predict(oly_glm, aus)
#> 1
#> 3.2

WAIT! What??? Australia earned more than 3 medals in 2012. Either the model is terrible, or we've made a mistake!

aus <- oly_gdp2012 %>% filter(Code == "AUS")
predict(oly_glm, aus, type="response")
#> 1
#> 23

Need to transform predictions into original units.

15 / 26

Example: winning tennis matches

We have data scraped from the web sites of the 2012 Grand Slam tennis tournaments. There are a lot of statistics on matches. Below we have the number of receiving points won, and whether the match was won or not.

16 / 26

Your turn

The response variable is binary. What type of GLM should be fit?

17 / 26

Your turn

The response variable is binary. What type of GLM should be fit?
bernouilli/binomial

17 / 26

Model

tennis_glm <- glm(won~Receiving.Points.Won, data=tennis,
family=binomial(link='logit'))
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.91 0.586 -5.0 7.1e-07
#> Receiving.Points.Won 0.11 0.015 7.3 3.0e-13

18 / 26

Your turn

Write down the fitted model

19 / 26

Your turn

Write down the fitted model Let

u=exp(2.91+0.11RPW) then

won^=u1+u

19 / 26

Model fit

#>
#> Call:
#> glm(formula = won ~ Receiving.Points.Won, family = binomial(link = "logit"),
#> data = tennis)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -2.506 0.227 0.411 0.624 1.877
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.9053 0.5860 -4.96 7.1e-07 ***
#> Receiving.Points.Won 0.1111 0.0152 7.29 3.0e-13 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#> Null deviance: 472.99 on 511 degrees of freedom
#> Residual deviance: 402.16 on 510 degrees of freedom
#> AIC: 406.2
#>
#> Number of Fisher Scoring iterations: 5

Not much difference between null and residual deviance, suggests return points won does not explain much of the match result.

20 / 26

Residuals

Model is just not capturing the data very well. There are two groups of residuals, its overfitting a chunk and underfitting chunks of data.

21 / 26

Influence statistics

#> .cooksd .resid
#> 1 6.0e-02 1.877
#> 2 3.6e-02 -2.505
#> 3 2.9e-02 -2.420
#> 4 2.4e-02 1.528
#> 5 2.0e-02 -2.287
#> 6 1.7e-02 -2.242
#> 7 1.7e-02 -2.242
#> 8 1.5e-02 -2.196
#> 9 1.3e-02 -2.149
#> 10 1.2e-02 1.329
#> 11 1.2e-02 1.329
#> 12 1.1e-02 -2.103
#> 13 1.1e-02 -2.103
#> 14 1.1e-02 -2.103
#> 15 9.9e-03 -2.055
#> 16 9.9e-03 -2.055
#> 17 9.9e-03 -2.055
#> 18 9.9e-03 -2.055
#> 19 9.4e-03 1.280
#> 20 9.4e-03 1.280
#> 21 9.4e-03 1.280
#> 22 9.4e-03 1.280
#> 23 8.6e-03 -2.008
#> 24 7.6e-03 1.232
#> 25 7.6e-03 1.232
#> 26 7.5e-03 -1.959
#> 27 7.5e-03 -1.959
#> 28 7.5e-03 -1.959
#> 29 7.5e-03 -1.959
#> 30 7.5e-03 -1.959
#> 31 7.5e-03 -1.959
#> 32 6.6e-03 -1.911
#> 33 6.6e-03 -1.911
#> 34 5.9e-03 -1.124
#> 35 5.9e-03 -1.170
#> 36 5.9e-03 -1.862
#> 37 5.9e-03 -1.862
#> 38 5.9e-03 -1.078
#> 39 5.9e-03 -1.078
#> 40 5.7e-03 -1.266
#> 41 5.7e-03 -1.266
#> 42 5.6e-03 -1.315
#> 43 5.6e-03 -1.315
#> 44 5.6e-03 -1.315
#> 45 5.6e-03 -1.315
#> 46 5.6e-03 -1.315
#> 47 5.6e-03 -1.315
#> 48 5.6e-03 -0.989
#> 49 5.4e-03 -1.364
#> 50 5.4e-03 -1.364
#> 51 5.4e-03 -1.364
#> 52 5.4e-03 -1.364
#> 53 5.4e-03 -0.946
#> 54 5.3e-03 -1.813
#> 55 5.3e-03 -1.813
#> 56 5.3e-03 -1.813
#> 57 5.2e-03 -1.413
#> 58 5.2e-03 -1.413
#> 59 5.2e-03 -1.413
#> 60 5.2e-03 -1.413
#> 61 5.2e-03 -1.413
#> 62 5.2e-03 -1.413
#> 63 5.2e-03 -1.413
#> 64 5.0e-03 -1.463
#> 65 5.0e-03 -1.463
#> 66 5.0e-03 -1.463
#> 67 5.0e-03 -1.463
#> 68 5.0e-03 -1.463
#> 69 5.0e-03 -1.463
#> 70 5.0e-03 -1.763
#> 71 5.0e-03 -1.763
#> 72 5.0e-03 -1.763
#> 73 5.0e-03 -1.763
#> 74 5.0e-03 -1.763
#> 75 4.9e-03 -1.513
#> 76 4.9e-03 -1.513
#> 77 4.9e-03 -1.513
#> 78 4.9e-03 -1.513
#> 79 4.9e-03 -1.513
#> 80 4.9e-03 -1.513
#> 81 4.9e-03 -1.513
#> 82 4.8e-03 1.138
#> 83 4.8e-03 1.138
#> 84 4.8e-03 1.138
#> 85 4.8e-03 1.138
#> 86 4.8e-03 1.138
#> 87 4.8e-03 -1.713
#> 88 4.8e-03 -1.713
#> 89 4.8e-03 -1.713
#> 90 4.8e-03 -1.713
#> 91 4.7e-03 -1.563
#> 92 4.7e-03 -1.563
#> 93 4.7e-03 -1.563
#> 94 4.6e-03 -1.663
#> 95 4.6e-03 -1.663
#> 96 4.6e-03 -1.663
#> 97 4.6e-03 -1.663
#> 98 4.6e-03 -1.613
#> 99 4.6e-03 -1.613
#> 100 4.6e-03 -1.613
#> 101 4.6e-03 -1.613
#> 102 4.6e-03 -1.613
#> 103 4.6e-03 -1.613
#> 104 3.8e-03 1.091
#> 105 3.8e-03 1.091
#> 106 3.8e-03 1.091
#> 107 3.0e-03 1.046
#> 108 3.0e-03 1.046
#> 109 3.0e-03 1.046
#> 110 2.6e-03 -0.614
#> 111 2.3e-03 1.002
#> 112 2.3e-03 1.002
#> 113 2.3e-03 1.002
#> 114 2.3e-03 1.002
#> 115 2.3e-03 1.002
#> 116 2.3e-03 1.002
#> 117 2.3e-03 1.002
#> 118 1.8e-03 0.959
#> 119 1.8e-03 0.959
#> 120 1.8e-03 0.959
#> 121 1.8e-03 0.959
#> 122 1.8e-03 0.959
#> 123 1.8e-03 0.959
#> 124 1.8e-03 0.959
#> 125 1.8e-03 0.959
#> 126 1.8e-03 0.959
#> 127 1.8e-03 0.959
#> 128 1.8e-03 0.959
#> 129 1.4e-03 0.917
#> 130 1.4e-03 0.917
#> 131 1.4e-03 0.917
#> 132 1.4e-03 0.917
#> 133 1.4e-03 0.917
#> 134 1.4e-03 0.917
#> 135 1.4e-03 0.917
#> 136 1.4e-03 0.917
#> 137 1.4e-03 0.917
#> 138 1.4e-03 0.917
#> 139 1.4e-03 0.917
#> 140 1.1e-03 0.876
#> 141 1.1e-03 0.876
#> 142 1.1e-03 0.876
#> 143 1.1e-03 0.876
#> 144 1.1e-03 0.876
#> 145 1.1e-03 0.876
#> 146 1.1e-03 0.876
#> 147 8.3e-04 0.836
#> 148 8.3e-04 0.836
#> 149 8.3e-04 0.836
#> 150 8.3e-04 0.836
#> 151 8.3e-04 0.836
#> 152 8.3e-04 0.836
#> 153 8.3e-04 0.836
#> 154 6.5e-04 0.797
#> 155 6.5e-04 0.797
#> 156 6.5e-04 0.797
#> 157 6.5e-04 0.797
#> 158 6.5e-04 0.797
#> 159 6.5e-04 0.797
#> 160 6.5e-04 0.797
#> 161 6.5e-04 0.797
#> 162 6.5e-04 0.797
#> 163 6.5e-04 0.797
#> 164 6.5e-04 0.797
#> 165 6.5e-04 0.797
#> 166 6.5e-04 0.797
#> 167 6.5e-04 0.797
#> 168 6.5e-04 0.797
#> 169 5.2e-04 0.760
#> 170 5.2e-04 0.760
#> 171 5.2e-04 0.760
#> 172 5.2e-04 0.760
#> 173 5.2e-04 0.760
#> 174 5.2e-04 0.760
#> 175 5.2e-04 0.760
#> 176 5.2e-04 0.760
#> 177 5.2e-04 0.760
#> 178 5.2e-04 0.760
#> 179 5.2e-04 0.760
#> 180 5.2e-04 0.760
#> 181 4.3e-04 0.724
#> 182 4.3e-04 0.724
#> 183 4.3e-04 0.724
#> 184 4.3e-04 0.724
#> 185 4.3e-04 0.724
#> 186 4.3e-04 0.724
#> 187 4.3e-04 0.724
#> 188 4.3e-04 0.724
#> 189 4.3e-04 0.724
#> 190 4.3e-04 0.724
#> 191 4.3e-04 0.724
#> 192 4.3e-04 0.724
#> 193 4.3e-04 0.724
#> 194 4.3e-04 0.724
#> 195 3.6e-04 0.689
#> 196 3.6e-04 0.689
#> 197 3.6e-04 0.689
#> 198 3.6e-04 0.689
#> 199 3.6e-04 0.689
#> 200 3.6e-04 0.689
#> 201 3.6e-04 0.689
#> 202 3.6e-04 0.689
#> 203 3.6e-04 0.689
#> 204 3.6e-04 0.689
#> 205 3.6e-04 0.689
#> 206 3.1e-04 0.656
#> 207 3.1e-04 0.656
#> 208 3.1e-04 0.656
#> 209 3.1e-04 0.656
#> 210 3.1e-04 0.656
#> 211 3.1e-04 0.656
#> 212 3.1e-04 0.656
#> 213 3.1e-04 0.656
#> 214 2.7e-04 0.624
#> 215 2.7e-04 0.624
#> 216 2.7e-04 0.624
#> 217 2.7e-04 0.624
#> 218 2.7e-04 0.624
#> 219 2.7e-04 0.624
#> 220 2.7e-04 0.624
#> 221 2.4e-04 0.593
#> 222 2.4e-04 0.593
#> 223 2.4e-04 0.593
#> 224 2.4e-04 0.593
#> 225 2.4e-04 0.593
#> 226 2.4e-04 0.593
#> 227 2.4e-04 0.593
#> 228 2.4e-04 0.593
#> 229 2.4e-04 0.593
#> 230 2.4e-04 0.593
#> 231 2.4e-04 0.593
#> 232 2.4e-04 0.593
#> 233 2.4e-04 0.593
#> 234 2.4e-04 0.593
#> 235 2.4e-04 0.593
#> 236 2.2e-04 0.563
#> 237 2.2e-04 0.563
#> 238 2.2e-04 0.563
#> 239 2.2e-04 0.563
#> 240 2.2e-04 0.563
#> 241 2.2e-04 0.563
#> 242 2.2e-04 0.563
#> 243 2.2e-04 0.563
#> 244 2.2e-04 0.563
#> 245 2.2e-04 0.563
#> 246 2.2e-04 0.563
#> 247 2.2e-04 0.563
#> 248 2.2e-04 0.563
#> 249 2.2e-04 0.563
#> 250 2.2e-04 0.563
#> 251 2.2e-04 0.563
#> 252 2.2e-04 0.563
#> 253 2.2e-04 0.563
#> 254 2.2e-04 0.563
#> 255 2.0e-04 0.535
#> 256 2.0e-04 0.535
#> 257 2.0e-04 0.535
#> 258 2.0e-04 0.535
#> 259 2.0e-04 0.535
#> 260 2.0e-04 0.535
#> 261 2.0e-04 0.535
#> 262 2.0e-04 0.535
#> 263 2.0e-04 0.535
#> 264 2.0e-04 0.535
#> 265 2.0e-04 0.535
#> 266 2.0e-04 0.535
#> 267 2.0e-04 0.535
#> 268 2.0e-04 0.535
#> 269 2.0e-04 0.535
#> 270 2.0e-04 0.535
#> 271 2.0e-04 0.535
#> 272 1.9e-04 0.508
#> 273 1.9e-04 0.508
#> 274 1.9e-04 0.508
#> 275 1.9e-04 0.508
#> 276 1.9e-04 0.508
#> 277 1.9e-04 0.508
#> 278 1.9e-04 0.508
#> 279 1.9e-04 0.508
#> 280 1.9e-04 0.508
#> 281 1.9e-04 0.508
#> 282 1.9e-04 0.508
#> 283 1.9e-04 0.508
#> 284 1.9e-04 0.508
#> 285 1.9e-04 0.508
#> 286 1.9e-04 0.508
#> 287 1.9e-04 0.508
#> 288 1.9e-04 0.508
#> 289 1.9e-04 0.508
#> 290 1.7e-04 0.482
#> 291 1.7e-04 0.482
#> 292 1.7e-04 0.482
#> 293 1.7e-04 0.482
#> 294 1.7e-04 0.482
#> 295 1.7e-04 0.482
#> 296 1.7e-04 0.482
#> 297 1.7e-04 0.482
#> 298 1.7e-04 0.482
#> 299 1.7e-04 0.482
#> 300 1.7e-04 0.482
#> 301 1.7e-04 0.482
#> 302 1.7e-04 0.482
#> 303 1.7e-04 0.482
#> 304 1.7e-04 0.482
#> 305 1.7e-04 0.482
#> 306 1.7e-04 0.482
#> 307 1.7e-04 0.482
#> 308 1.7e-04 0.482
#> 309 1.7e-04 0.482
#> 310 1.7e-04 0.482
#> 311 1.7e-04 0.482
#> 312 1.7e-04 0.482
#> 313 1.6e-04 0.457
#> 314 1.6e-04 0.457
#> 315 1.6e-04 0.457
#> 316 1.6e-04 0.457
#> 317 1.6e-04 0.457
#> 318 1.6e-04 0.457
#> 319 1.6e-04 0.457
#> 320 1.6e-04 0.457
#> 321 1.6e-04 0.457
#> 322 1.6e-04 0.457
#> 323 1.6e-04 0.457
#> 324 1.6e-04 0.457
#> 325 1.6e-04 0.457
#> 326 1.5e-04 0.434
#> 327 1.5e-04 0.434
#> 328 1.5e-04 0.434
#> 329 1.5e-04 0.434
#> 330 1.5e-04 0.434
#> 331 1.5e-04 0.434
#> 332 1.5e-04 0.434
#> 333 1.5e-04 0.434
#> 334 1.5e-04 0.434
#> 335 1.5e-04 0.434
#> 336 1.5e-04 0.434
#> 337 1.5e-04 0.434
#> 338 1.5e-04 0.434
#> 339 1.5e-04 0.434
#> 340 1.5e-04 0.434
#> 341 1.5e-04 0.434
#> 342 1.5e-04 0.434
#> 343 1.4e-04 0.411
#> 344 1.4e-04 0.411
#> 345 1.4e-04 0.411
#> 346 1.4e-04 0.411
#> 347 1.4e-04 0.411
#> 348 1.4e-04 0.411
#> 349 1.4e-04 0.411
#> 350 1.4e-04 0.411
#> 351 1.4e-04 0.411
#> 352 1.4e-04 0.411
#> 353 1.4e-04 0.411
#> 354 1.2e-04 0.390
#> 355 1.2e-04 0.390
#> 356 1.2e-04 0.390
#> 357 1.2e-04 0.390
#> 358 1.2e-04 0.390
#> 359 1.2e-04 0.390
#> 360 1.2e-04 0.390
#> 361 1.2e-04 0.390
#> 362 1.2e-04 0.390
#> 363 1.2e-04 0.390
#> 364 1.2e-04 0.390
#> 365 1.2e-04 0.390
#> 366 1.2e-04 0.390
#> 367 1.2e-04 0.390
#> 368 1.2e-04 0.390
#> 369 1.1e-04 0.370
#> 370 1.1e-04 0.370
#> 371 1.1e-04 0.370
#> 372 1.1e-04 0.370
#> 373 1.1e-04 0.370
#> 374 1.1e-04 0.370
#> 375 1.1e-04 0.370
#> 376 1.1e-04 0.370
#> 377 1.1e-04 0.370
#> 378 1.1e-04 0.370
#> 379 1.1e-04 0.370
#> 380 1.1e-04 0.370
#> 381 1.1e-04 0.370
#> 382 1.1e-04 0.370
#> 383 1.1e-04 0.370
#> 384 1.0e-04 0.350
#> 385 1.0e-04 0.350
#> 386 1.0e-04 0.350
#> 387 1.0e-04 0.350
#> 388 1.0e-04 0.350
#> 389 1.0e-04 0.350
#> 390 1.0e-04 0.350
#> 391 1.0e-04 0.350
#> 392 1.0e-04 0.350
#> 393 9.3e-05 0.332
#> 394 9.3e-05 0.332
#> 395 9.3e-05 0.332
#> 396 9.3e-05 0.332
#> 397 9.3e-05 0.332
#> 398 9.3e-05 0.332
#> 399 9.3e-05 0.332
#> 400 9.3e-05 0.332
#> 401 9.3e-05 0.332
#> 402 9.3e-05 0.332
#> 403 9.3e-05 0.332
#> 404 9.3e-05 0.332
#> 405 9.3e-05 0.332
#> 406 8.3e-05 0.314
#> 407 8.3e-05 0.314
#> 408 8.3e-05 0.314
#> 409 8.3e-05 0.314
#> 410 8.3e-05 0.314
#> 411 8.3e-05 0.314
#> 412 8.3e-05 0.314
#> 413 8.3e-05 0.314
#> 414 8.3e-05 0.314
#> 415 8.3e-05 0.314
#> 416 8.3e-05 0.314
#> 417 8.3e-05 0.314
#> 418 7.4e-05 0.298
#> 419 7.4e-05 0.298
#> 420 7.4e-05 0.298
#> 421 7.4e-05 0.298
#> 422 7.4e-05 0.298
#> 423 7.4e-05 0.298
#> 424 7.4e-05 0.298
#> 425 7.4e-05 0.298
#> 426 7.4e-05 0.298
#> 427 7.4e-05 0.298
#> 428 7.4e-05 0.298
#> 429 7.4e-05 0.298
#> 430 7.4e-05 0.298
#> 431 7.4e-05 0.298
#> 432 7.4e-05 0.298
#> 433 7.4e-05 0.298
#> 434 6.6e-05 0.282
#> 435 6.6e-05 0.282
#> 436 6.6e-05 0.282
#> 437 6.6e-05 0.282
#> 438 6.6e-05 0.282
#> 439 6.6e-05 0.282
#> 440 6.6e-05 0.282
#> 441 6.6e-05 0.282
#> 442 6.6e-05 0.282
#> 443 6.6e-05 0.282
#> 444 6.6e-05 0.282
#> 445 6.6e-05 0.282
#> 446 6.6e-05 0.282
#> 447 6.6e-05 0.282
#> 448 5.8e-05 0.267
#> 449 5.8e-05 0.267
#> 450 5.8e-05 0.267
#> 451 5.8e-05 0.267
#> 452 5.8e-05 0.267
#> 453 5.8e-05 0.267
#> 454 5.8e-05 0.267
#> 455 5.8e-05 0.267
#> 456 5.8e-05 0.267
#> 457 5.8e-05 0.267
#> 458 5.1e-05 0.253
#> 459 5.1e-05 0.253
#> 460 5.1e-05 0.253
#> 461 5.1e-05 0.253
#> 462 5.1e-05 0.253
#> 463 5.1e-05 0.253
#> 464 5.1e-05 0.253
#> 465 5.1e-05 0.253
#> 466 5.1e-05 0.253
#> 467 4.5e-05 0.239
#> 468 4.5e-05 0.239
#> 469 4.5e-05 0.239
#> 470 4.5e-05 0.239
#> 471 4.5e-05 0.239
#> 472 4.0e-05 0.227
#> 473 4.0e-05 0.227
#> 474 4.0e-05 0.227
#> 475 4.0e-05 0.227
#> 476 4.0e-05 0.227
#> 477 4.0e-05 0.227
#> 478 4.0e-05 0.227
#> 479 4.0e-05 0.227
#> 480 4.0e-05 0.227
#> 481 3.4e-05 0.214
#> 482 3.4e-05 0.214
#> 483 3.4e-05 0.214
#> 484 3.4e-05 0.214
#> 485 3.4e-05 0.214
#> 486 3.4e-05 0.214
#> 487 3.4e-05 0.214
#> 488 3.0e-05 0.203
#> 489 3.0e-05 0.203
#> 490 2.6e-05 0.192
#> 491 2.6e-05 0.192
#> 492 2.6e-05 0.192
#> 493 2.6e-05 0.192
#> 494 2.2e-05 0.182
#> 495 2.2e-05 0.182
#> 496 2.2e-05 0.182
#> 497 2.2e-05 0.182
#> 498 2.2e-05 0.182
#> 499 1.9e-05 0.172
#> 500 1.9e-05 0.172
#> 501 1.9e-05 0.172
#> 502 1.9e-05 0.172
#> 503 1.7e-05 0.163
#> 504 1.7e-05 0.163
#> 505 1.0e-05 0.138
#> 506 7.5e-06 0.124
#> 507 5.4e-06 0.111
#> 508 3.9e-06 0.099
#> 509 3.3e-06 0.094
#> 510 2.8e-06 0.089
#> 511 2.8e-06 0.089
#> 512 2.0e-06 0.079

No influential observations.

22 / 26

Prediction from the model

newdata <- data.frame(Receiving.Points.Won=c(20, 50), won=c(NA, NA))
predict(tennis_glm, newdata, type="response")
#> 1 2
#> 0.34 0.93

Interpret the response as the probability of winning if your receiving points was 20, 50.

23 / 26

Summary

Generalised linear models are a systematic way to fit different types of response distributions.

24 / 26

Share and share alike

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

26 / 26

Generalised linear models

  • Overview
  • Types
  • Assumptions
  • Fitting
  • Examples
2 / 26
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow