yi=β0+β1x1+β2x2+ε or E(Yi)=β0+β1x1+β2x2
yi
has a normal distribution, and so ei∼N(0,σ2)
β0+β1x1+β2x2
yi=exp(β0+β1x1+β2x2)+ε
yi
takes integer values, 0, 1, 2, ...ln(μ)
, name=log
. (Think of μ
as ^y
.)yi=exp(β0+β1x1+β2x2)1+exp(β0+β1x1+β2x2)+ε
yi
takes integer values, {0,1}
(bernouilli), {0,1,...,n}
(binomial)μ=exp(β0+β1x1+β2x2)1+exp(β0+β1x1+β2x2)
, link function is lnμ1−μ
, name=logit
y1,y2,...,yn
are independently distributed, i.e., cases are independent.yi
does NOT need to be normally distributed, but it typically assumes a distribution from an exponential family (e.g. binomial, Poisson, multinomial, normal,...)oly_glm <- glm(M2012~GDP_log, data=oly_gdp2012, family=poisson(link=log))summary(oly_glm)$coefficients#> Estimate Std. Error z value Pr(>|z|)#> (Intercept) -13.2 0.538 -24 3.6e-132#> GDP_log 1.3 0.045 30 6.8e-198
Write down the formula of the fitted model.
Write down the formula of the fitted model.
^log(M2012)=−13.2+1.3GDP.log
#> #> Call:#> glm(formula = M2012 ~ GDP_log, family = poisson(link = log), #> data = oly_gdp2012)#> #> Deviance Residuals: #> Min 1Q Median 3Q Max #> -4.80 -2.22 -0.36 1.07 8.55 #> #> Coefficients:#> Estimate Std. Error z value Pr(>|z|) #> (Intercept) -13.1691 0.5383 -24.5 <2e-16 ***#> GDP_log 1.3406 0.0447 30.0 <2e-16 ***#> ---#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1#> #> (Dispersion parameter for poisson family taken to be 1)#> #> Null deviance: 1567.70 on 84 degrees of freedom#> Residual deviance: 545.92 on 83 degrees of freedom#> AIC: 845.7#> #> Number of Fisher Scoring iterations: 5
The difference between the null and residual deviance is substantial, suggesting a good fit.
Heteroskedasticity in residuals. One fairly large residual.
#> .rownames .cooksd .resid#> 1 RussianFed 1.9e+00 8.553#> 2 China 1.5e+00 3.743#> 3 UnitedStates 8.3e-01 1.468#> 4 GreatBritain 8.0e-01 5.232#> 5 Jamaica 4.4e-01 5.267#> 6 India 2.6e-01 -4.800#> 7 Japan 2.5e-01 -2.010#> 8 Cuba 2.4e-01 4.215#> 9 Ukraine 2.3e-01 4.270#> 10 Kenya 1.9e-01 3.802#> 11 Belarus 1.6e-01 3.535#> 12 Hungary 1.5e-01 3.621#> 13 Brazil 1.5e-01 -2.862#> 14 Georgia 1.3e-01 3.219#> 15 Indonesia 1.2e-01 -4.563#> 16 Mexico 9.8e-02 -3.444#> 17 SaudiArabia 9.2e-02 -4.388#> 18 Australia 7.6e-02 2.211#> 19 Azerbaijan 7.5e-02 2.584#> 20 Mongolia 7.3e-02 2.612#> 21 ChineseTaipei 7.0e-02 -3.680#> 22 Turkey 6.5e-02 -3.179#> 23 Switzerland 6.5e-02 -3.293#> 24 Ethiopia 6.2e-02 2.385#> 25 Belgium 6.0e-02 -3.294#> 26 Venezuela 5.8e-02 -3.498#> 27 NewZealand 5.0e-02 2.211#> 28 HongKongChina 4.9e-02 -3.191#> 29 Portugal 4.9e-02 -3.164#> 30 Greece 4.5e-02 -2.932#> 31 Kazakhstan 4.4e-02 2.100#> 32 Norway 4.3e-02 -2.700#> 33 DPRKorea 4.2e-02 2.020#> 34 Algeria 4.0e-02 -2.815#> 35 Singapore 3.9e-02 -2.705#> 36 Argentina 3.8e-02 -2.534#> 37 Kuwait 3.8e-02 -2.731#> 38 Thailand 3.7e-02 -2.566#> 39 Malaysia 3.7e-02 -2.602#> 40 Canada 3.6e-02 -1.607#> 41 Egypt 3.4e-02 -2.512#> 42 Korea 3.3e-02 1.635#> 43 Finland 2.9e-02 -2.222#> 44 Spain 2.6e-02 -1.463#> 45 Qatar 2.6e-02 -2.126#> 46 Morocco 2.4e-02 -2.147#> 47 Germany 2.1e-02 0.754#> 48 SouthAfrica 1.9e-02 -1.705#> 49 Sweden 1.8e-02 -1.586#> 50 Armenia 1.4e-02 1.291#> 51 TrinidadTobago 1.4e-02 1.234#> 52 PuertoRico 1.2e-02 -1.390#> 53 Guatemala 1.1e-02 -1.396#> 54 Croatia 1.1e-02 1.073#> 55 Lithuania 1.0e-02 1.072#> 56 Ireland 7.5e-03 -1.044#> 57 CzechRepublic 5.5e-03 0.804#> 58 Grenada 5.2e-03 1.025#> 59 Netherlands 5.2e-03 0.726#> 60 Poland 5.0e-03 -0.817#> 61 Rep.ofMoldova 4.9e-03 0.827#> 62 Romania 4.8e-03 0.750#> 63 Bahrain 4.8e-03 -0.925#> 64 Cyprus 4.6e-03 -0.904#> 65 DominicanRep. 4.4e-03 -0.822#> 66 Bulgaria 4.4e-03 -0.820#> 67 Uzbekistan 2.6e-03 0.555#> 68 Serbia 2.5e-03 0.550#> 69 Afghanistan 2.3e-03 -0.637#> 70 Colombia 2.0e-03 -0.518#> 71 Gabon 1.9e-03 -0.588#> 72 Botswana 1.9e-03 -0.575#> 73 Italy 1.8e-03 -0.304#> 74 Uganda 1.7e-03 -0.558#> 75 Slovenia 1.1e-03 0.359#> 76 Slovakia 9.6e-04 -0.360#> 77 Denmark 8.2e-04 -0.330#> 78 Montenegro 3.6e-04 0.257#> 79 Latvia 2.4e-04 -0.189#> 80 Tunisia 8.8e-05 -0.109#> 81 Bahamas 7.5e-05 -0.116#> 82 France 4.7e-05 0.042#> 83 Iran 3.5e-06 -0.021#> 84 Estonia 3.5e-06 -0.022#> 85 Tajikistan 8.3e-07 -0.012
Largest Cooks D values enough to have some concerns about the influence that Russian Federation and China have on the model fit. Should re-fit without these two cases.
aus <- oly_gdp2012 %>% filter(Code == "AUS")predict(oly_glm, aus)#> 1 #> 3.2
WAIT! What??? Australia earned more than 3 medals in 2012. Either the model is terrible, or we've made a mistake!
aus <- oly_gdp2012 %>% filter(Code == "AUS")predict(oly_glm, aus)#> 1 #> 3.2
WAIT! What??? Australia earned more than 3 medals in 2012. Either the model is terrible, or we've made a mistake!
aus <- oly_gdp2012 %>% filter(Code == "AUS")predict(oly_glm, aus, type="response")#> 1 #> 23
aus <- oly_gdp2012 %>% filter(Code == "AUS")predict(oly_glm, aus)#> 1 #> 3.2
WAIT! What??? Australia earned more than 3 medals in 2012. Either the model is terrible, or we've made a mistake!
aus <- oly_gdp2012 %>% filter(Code == "AUS")predict(oly_glm, aus, type="response")#> 1 #> 23
Need to transform predictions into original units.
We have data scraped from the web sites of the 2012 Grand Slam tennis tournaments. There are a lot of statistics on matches. Below we have the number of receiving points won, and whether the match was won or not.
The response variable is binary. What type of GLM should be fit?
The response variable is binary. What type of GLM should be fit?
bernouilli/binomial
tennis_glm <- glm(won~Receiving.Points.Won, data=tennis, family=binomial(link='logit'))
#> Estimate Std. Error z value Pr(>|z|)#> (Intercept) -2.91 0.586 -5.0 7.1e-07#> Receiving.Points.Won 0.11 0.015 7.3 3.0e-13
Write down the fitted model
Write down the fitted model Let
u=exp(−2.91+0.11RPW)
then
^won=u1+u
#> #> Call:#> glm(formula = won ~ Receiving.Points.Won, family = binomial(link = "logit"), #> data = tennis)#> #> Deviance Residuals: #> Min 1Q Median 3Q Max #> -2.506 0.227 0.411 0.624 1.877 #> #> Coefficients:#> Estimate Std. Error z value Pr(>|z|) #> (Intercept) -2.9053 0.5860 -4.96 7.1e-07 ***#> Receiving.Points.Won 0.1111 0.0152 7.29 3.0e-13 ***#> ---#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1#> #> (Dispersion parameter for binomial family taken to be 1)#> #> Null deviance: 472.99 on 511 degrees of freedom#> Residual deviance: 402.16 on 510 degrees of freedom#> AIC: 406.2#> #> Number of Fisher Scoring iterations: 5
Not much difference between null and residual deviance, suggests return points won does not explain much of the match result.
Model is just not capturing the data very well. There are two groups of residuals, its overfitting a chunk and underfitting chunks of data.
#> .cooksd .resid#> 1 6.0e-02 1.877#> 2 3.6e-02 -2.505#> 3 2.9e-02 -2.420#> 4 2.4e-02 1.528#> 5 2.0e-02 -2.287#> 6 1.7e-02 -2.242#> 7 1.7e-02 -2.242#> 8 1.5e-02 -2.196#> 9 1.3e-02 -2.149#> 10 1.2e-02 1.329#> 11 1.2e-02 1.329#> 12 1.1e-02 -2.103#> 13 1.1e-02 -2.103#> 14 1.1e-02 -2.103#> 15 9.9e-03 -2.055#> 16 9.9e-03 -2.055#> 17 9.9e-03 -2.055#> 18 9.9e-03 -2.055#> 19 9.4e-03 1.280#> 20 9.4e-03 1.280#> 21 9.4e-03 1.280#> 22 9.4e-03 1.280#> 23 8.6e-03 -2.008#> 24 7.6e-03 1.232#> 25 7.6e-03 1.232#> 26 7.5e-03 -1.959#> 27 7.5e-03 -1.959#> 28 7.5e-03 -1.959#> 29 7.5e-03 -1.959#> 30 7.5e-03 -1.959#> 31 7.5e-03 -1.959#> 32 6.6e-03 -1.911#> 33 6.6e-03 -1.911#> 34 5.9e-03 -1.124#> 35 5.9e-03 -1.170#> 36 5.9e-03 -1.862#> 37 5.9e-03 -1.862#> 38 5.9e-03 -1.078#> 39 5.9e-03 -1.078#> 40 5.7e-03 -1.266#> 41 5.7e-03 -1.266#> 42 5.6e-03 -1.315#> 43 5.6e-03 -1.315#> 44 5.6e-03 -1.315#> 45 5.6e-03 -1.315#> 46 5.6e-03 -1.315#> 47 5.6e-03 -1.315#> 48 5.6e-03 -0.989#> 49 5.4e-03 -1.364#> 50 5.4e-03 -1.364#> 51 5.4e-03 -1.364#> 52 5.4e-03 -1.364#> 53 5.4e-03 -0.946#> 54 5.3e-03 -1.813#> 55 5.3e-03 -1.813#> 56 5.3e-03 -1.813#> 57 5.2e-03 -1.413#> 58 5.2e-03 -1.413#> 59 5.2e-03 -1.413#> 60 5.2e-03 -1.413#> 61 5.2e-03 -1.413#> 62 5.2e-03 -1.413#> 63 5.2e-03 -1.413#> 64 5.0e-03 -1.463#> 65 5.0e-03 -1.463#> 66 5.0e-03 -1.463#> 67 5.0e-03 -1.463#> 68 5.0e-03 -1.463#> 69 5.0e-03 -1.463#> 70 5.0e-03 -1.763#> 71 5.0e-03 -1.763#> 72 5.0e-03 -1.763#> 73 5.0e-03 -1.763#> 74 5.0e-03 -1.763#> 75 4.9e-03 -1.513#> 76 4.9e-03 -1.513#> 77 4.9e-03 -1.513#> 78 4.9e-03 -1.513#> 79 4.9e-03 -1.513#> 80 4.9e-03 -1.513#> 81 4.9e-03 -1.513#> 82 4.8e-03 1.138#> 83 4.8e-03 1.138#> 84 4.8e-03 1.138#> 85 4.8e-03 1.138#> 86 4.8e-03 1.138#> 87 4.8e-03 -1.713#> 88 4.8e-03 -1.713#> 89 4.8e-03 -1.713#> 90 4.8e-03 -1.713#> 91 4.7e-03 -1.563#> 92 4.7e-03 -1.563#> 93 4.7e-03 -1.563#> 94 4.6e-03 -1.663#> 95 4.6e-03 -1.663#> 96 4.6e-03 -1.663#> 97 4.6e-03 -1.663#> 98 4.6e-03 -1.613#> 99 4.6e-03 -1.613#> 100 4.6e-03 -1.613#> 101 4.6e-03 -1.613#> 102 4.6e-03 -1.613#> 103 4.6e-03 -1.613#> 104 3.8e-03 1.091#> 105 3.8e-03 1.091#> 106 3.8e-03 1.091#> 107 3.0e-03 1.046#> 108 3.0e-03 1.046#> 109 3.0e-03 1.046#> 110 2.6e-03 -0.614#> 111 2.3e-03 1.002#> 112 2.3e-03 1.002#> 113 2.3e-03 1.002#> 114 2.3e-03 1.002#> 115 2.3e-03 1.002#> 116 2.3e-03 1.002#> 117 2.3e-03 1.002#> 118 1.8e-03 0.959#> 119 1.8e-03 0.959#> 120 1.8e-03 0.959#> 121 1.8e-03 0.959#> 122 1.8e-03 0.959#> 123 1.8e-03 0.959#> 124 1.8e-03 0.959#> 125 1.8e-03 0.959#> 126 1.8e-03 0.959#> 127 1.8e-03 0.959#> 128 1.8e-03 0.959#> 129 1.4e-03 0.917#> 130 1.4e-03 0.917#> 131 1.4e-03 0.917#> 132 1.4e-03 0.917#> 133 1.4e-03 0.917#> 134 1.4e-03 0.917#> 135 1.4e-03 0.917#> 136 1.4e-03 0.917#> 137 1.4e-03 0.917#> 138 1.4e-03 0.917#> 139 1.4e-03 0.917#> 140 1.1e-03 0.876#> 141 1.1e-03 0.876#> 142 1.1e-03 0.876#> 143 1.1e-03 0.876#> 144 1.1e-03 0.876#> 145 1.1e-03 0.876#> 146 1.1e-03 0.876#> 147 8.3e-04 0.836#> 148 8.3e-04 0.836#> 149 8.3e-04 0.836#> 150 8.3e-04 0.836#> 151 8.3e-04 0.836#> 152 8.3e-04 0.836#> 153 8.3e-04 0.836#> 154 6.5e-04 0.797#> 155 6.5e-04 0.797#> 156 6.5e-04 0.797#> 157 6.5e-04 0.797#> 158 6.5e-04 0.797#> 159 6.5e-04 0.797#> 160 6.5e-04 0.797#> 161 6.5e-04 0.797#> 162 6.5e-04 0.797#> 163 6.5e-04 0.797#> 164 6.5e-04 0.797#> 165 6.5e-04 0.797#> 166 6.5e-04 0.797#> 167 6.5e-04 0.797#> 168 6.5e-04 0.797#> 169 5.2e-04 0.760#> 170 5.2e-04 0.760#> 171 5.2e-04 0.760#> 172 5.2e-04 0.760#> 173 5.2e-04 0.760#> 174 5.2e-04 0.760#> 175 5.2e-04 0.760#> 176 5.2e-04 0.760#> 177 5.2e-04 0.760#> 178 5.2e-04 0.760#> 179 5.2e-04 0.760#> 180 5.2e-04 0.760#> 181 4.3e-04 0.724#> 182 4.3e-04 0.724#> 183 4.3e-04 0.724#> 184 4.3e-04 0.724#> 185 4.3e-04 0.724#> 186 4.3e-04 0.724#> 187 4.3e-04 0.724#> 188 4.3e-04 0.724#> 189 4.3e-04 0.724#> 190 4.3e-04 0.724#> 191 4.3e-04 0.724#> 192 4.3e-04 0.724#> 193 4.3e-04 0.724#> 194 4.3e-04 0.724#> 195 3.6e-04 0.689#> 196 3.6e-04 0.689#> 197 3.6e-04 0.689#> 198 3.6e-04 0.689#> 199 3.6e-04 0.689#> 200 3.6e-04 0.689#> 201 3.6e-04 0.689#> 202 3.6e-04 0.689#> 203 3.6e-04 0.689#> 204 3.6e-04 0.689#> 205 3.6e-04 0.689#> 206 3.1e-04 0.656#> 207 3.1e-04 0.656#> 208 3.1e-04 0.656#> 209 3.1e-04 0.656#> 210 3.1e-04 0.656#> 211 3.1e-04 0.656#> 212 3.1e-04 0.656#> 213 3.1e-04 0.656#> 214 2.7e-04 0.624#> 215 2.7e-04 0.624#> 216 2.7e-04 0.624#> 217 2.7e-04 0.624#> 218 2.7e-04 0.624#> 219 2.7e-04 0.624#> 220 2.7e-04 0.624#> 221 2.4e-04 0.593#> 222 2.4e-04 0.593#> 223 2.4e-04 0.593#> 224 2.4e-04 0.593#> 225 2.4e-04 0.593#> 226 2.4e-04 0.593#> 227 2.4e-04 0.593#> 228 2.4e-04 0.593#> 229 2.4e-04 0.593#> 230 2.4e-04 0.593#> 231 2.4e-04 0.593#> 232 2.4e-04 0.593#> 233 2.4e-04 0.593#> 234 2.4e-04 0.593#> 235 2.4e-04 0.593#> 236 2.2e-04 0.563#> 237 2.2e-04 0.563#> 238 2.2e-04 0.563#> 239 2.2e-04 0.563#> 240 2.2e-04 0.563#> 241 2.2e-04 0.563#> 242 2.2e-04 0.563#> 243 2.2e-04 0.563#> 244 2.2e-04 0.563#> 245 2.2e-04 0.563#> 246 2.2e-04 0.563#> 247 2.2e-04 0.563#> 248 2.2e-04 0.563#> 249 2.2e-04 0.563#> 250 2.2e-04 0.563#> 251 2.2e-04 0.563#> 252 2.2e-04 0.563#> 253 2.2e-04 0.563#> 254 2.2e-04 0.563#> 255 2.0e-04 0.535#> 256 2.0e-04 0.535#> 257 2.0e-04 0.535#> 258 2.0e-04 0.535#> 259 2.0e-04 0.535#> 260 2.0e-04 0.535#> 261 2.0e-04 0.535#> 262 2.0e-04 0.535#> 263 2.0e-04 0.535#> 264 2.0e-04 0.535#> 265 2.0e-04 0.535#> 266 2.0e-04 0.535#> 267 2.0e-04 0.535#> 268 2.0e-04 0.535#> 269 2.0e-04 0.535#> 270 2.0e-04 0.535#> 271 2.0e-04 0.535#> 272 1.9e-04 0.508#> 273 1.9e-04 0.508#> 274 1.9e-04 0.508#> 275 1.9e-04 0.508#> 276 1.9e-04 0.508#> 277 1.9e-04 0.508#> 278 1.9e-04 0.508#> 279 1.9e-04 0.508#> 280 1.9e-04 0.508#> 281 1.9e-04 0.508#> 282 1.9e-04 0.508#> 283 1.9e-04 0.508#> 284 1.9e-04 0.508#> 285 1.9e-04 0.508#> 286 1.9e-04 0.508#> 287 1.9e-04 0.508#> 288 1.9e-04 0.508#> 289 1.9e-04 0.508#> 290 1.7e-04 0.482#> 291 1.7e-04 0.482#> 292 1.7e-04 0.482#> 293 1.7e-04 0.482#> 294 1.7e-04 0.482#> 295 1.7e-04 0.482#> 296 1.7e-04 0.482#> 297 1.7e-04 0.482#> 298 1.7e-04 0.482#> 299 1.7e-04 0.482#> 300 1.7e-04 0.482#> 301 1.7e-04 0.482#> 302 1.7e-04 0.482#> 303 1.7e-04 0.482#> 304 1.7e-04 0.482#> 305 1.7e-04 0.482#> 306 1.7e-04 0.482#> 307 1.7e-04 0.482#> 308 1.7e-04 0.482#> 309 1.7e-04 0.482#> 310 1.7e-04 0.482#> 311 1.7e-04 0.482#> 312 1.7e-04 0.482#> 313 1.6e-04 0.457#> 314 1.6e-04 0.457#> 315 1.6e-04 0.457#> 316 1.6e-04 0.457#> 317 1.6e-04 0.457#> 318 1.6e-04 0.457#> 319 1.6e-04 0.457#> 320 1.6e-04 0.457#> 321 1.6e-04 0.457#> 322 1.6e-04 0.457#> 323 1.6e-04 0.457#> 324 1.6e-04 0.457#> 325 1.6e-04 0.457#> 326 1.5e-04 0.434#> 327 1.5e-04 0.434#> 328 1.5e-04 0.434#> 329 1.5e-04 0.434#> 330 1.5e-04 0.434#> 331 1.5e-04 0.434#> 332 1.5e-04 0.434#> 333 1.5e-04 0.434#> 334 1.5e-04 0.434#> 335 1.5e-04 0.434#> 336 1.5e-04 0.434#> 337 1.5e-04 0.434#> 338 1.5e-04 0.434#> 339 1.5e-04 0.434#> 340 1.5e-04 0.434#> 341 1.5e-04 0.434#> 342 1.5e-04 0.434#> 343 1.4e-04 0.411#> 344 1.4e-04 0.411#> 345 1.4e-04 0.411#> 346 1.4e-04 0.411#> 347 1.4e-04 0.411#> 348 1.4e-04 0.411#> 349 1.4e-04 0.411#> 350 1.4e-04 0.411#> 351 1.4e-04 0.411#> 352 1.4e-04 0.411#> 353 1.4e-04 0.411#> 354 1.2e-04 0.390#> 355 1.2e-04 0.390#> 356 1.2e-04 0.390#> 357 1.2e-04 0.390#> 358 1.2e-04 0.390#> 359 1.2e-04 0.390#> 360 1.2e-04 0.390#> 361 1.2e-04 0.390#> 362 1.2e-04 0.390#> 363 1.2e-04 0.390#> 364 1.2e-04 0.390#> 365 1.2e-04 0.390#> 366 1.2e-04 0.390#> 367 1.2e-04 0.390#> 368 1.2e-04 0.390#> 369 1.1e-04 0.370#> 370 1.1e-04 0.370#> 371 1.1e-04 0.370#> 372 1.1e-04 0.370#> 373 1.1e-04 0.370#> 374 1.1e-04 0.370#> 375 1.1e-04 0.370#> 376 1.1e-04 0.370#> 377 1.1e-04 0.370#> 378 1.1e-04 0.370#> 379 1.1e-04 0.370#> 380 1.1e-04 0.370#> 381 1.1e-04 0.370#> 382 1.1e-04 0.370#> 383 1.1e-04 0.370#> 384 1.0e-04 0.350#> 385 1.0e-04 0.350#> 386 1.0e-04 0.350#> 387 1.0e-04 0.350#> 388 1.0e-04 0.350#> 389 1.0e-04 0.350#> 390 1.0e-04 0.350#> 391 1.0e-04 0.350#> 392 1.0e-04 0.350#> 393 9.3e-05 0.332#> 394 9.3e-05 0.332#> 395 9.3e-05 0.332#> 396 9.3e-05 0.332#> 397 9.3e-05 0.332#> 398 9.3e-05 0.332#> 399 9.3e-05 0.332#> 400 9.3e-05 0.332#> 401 9.3e-05 0.332#> 402 9.3e-05 0.332#> 403 9.3e-05 0.332#> 404 9.3e-05 0.332#> 405 9.3e-05 0.332#> 406 8.3e-05 0.314#> 407 8.3e-05 0.314#> 408 8.3e-05 0.314#> 409 8.3e-05 0.314#> 410 8.3e-05 0.314#> 411 8.3e-05 0.314#> 412 8.3e-05 0.314#> 413 8.3e-05 0.314#> 414 8.3e-05 0.314#> 415 8.3e-05 0.314#> 416 8.3e-05 0.314#> 417 8.3e-05 0.314#> 418 7.4e-05 0.298#> 419 7.4e-05 0.298#> 420 7.4e-05 0.298#> 421 7.4e-05 0.298#> 422 7.4e-05 0.298#> 423 7.4e-05 0.298#> 424 7.4e-05 0.298#> 425 7.4e-05 0.298#> 426 7.4e-05 0.298#> 427 7.4e-05 0.298#> 428 7.4e-05 0.298#> 429 7.4e-05 0.298#> 430 7.4e-05 0.298#> 431 7.4e-05 0.298#> 432 7.4e-05 0.298#> 433 7.4e-05 0.298#> 434 6.6e-05 0.282#> 435 6.6e-05 0.282#> 436 6.6e-05 0.282#> 437 6.6e-05 0.282#> 438 6.6e-05 0.282#> 439 6.6e-05 0.282#> 440 6.6e-05 0.282#> 441 6.6e-05 0.282#> 442 6.6e-05 0.282#> 443 6.6e-05 0.282#> 444 6.6e-05 0.282#> 445 6.6e-05 0.282#> 446 6.6e-05 0.282#> 447 6.6e-05 0.282#> 448 5.8e-05 0.267#> 449 5.8e-05 0.267#> 450 5.8e-05 0.267#> 451 5.8e-05 0.267#> 452 5.8e-05 0.267#> 453 5.8e-05 0.267#> 454 5.8e-05 0.267#> 455 5.8e-05 0.267#> 456 5.8e-05 0.267#> 457 5.8e-05 0.267#> 458 5.1e-05 0.253#> 459 5.1e-05 0.253#> 460 5.1e-05 0.253#> 461 5.1e-05 0.253#> 462 5.1e-05 0.253#> 463 5.1e-05 0.253#> 464 5.1e-05 0.253#> 465 5.1e-05 0.253#> 466 5.1e-05 0.253#> 467 4.5e-05 0.239#> 468 4.5e-05 0.239#> 469 4.5e-05 0.239#> 470 4.5e-05 0.239#> 471 4.5e-05 0.239#> 472 4.0e-05 0.227#> 473 4.0e-05 0.227#> 474 4.0e-05 0.227#> 475 4.0e-05 0.227#> 476 4.0e-05 0.227#> 477 4.0e-05 0.227#> 478 4.0e-05 0.227#> 479 4.0e-05 0.227#> 480 4.0e-05 0.227#> 481 3.4e-05 0.214#> 482 3.4e-05 0.214#> 483 3.4e-05 0.214#> 484 3.4e-05 0.214#> 485 3.4e-05 0.214#> 486 3.4e-05 0.214#> 487 3.4e-05 0.214#> 488 3.0e-05 0.203#> 489 3.0e-05 0.203#> 490 2.6e-05 0.192#> 491 2.6e-05 0.192#> 492 2.6e-05 0.192#> 493 2.6e-05 0.192#> 494 2.2e-05 0.182#> 495 2.2e-05 0.182#> 496 2.2e-05 0.182#> 497 2.2e-05 0.182#> 498 2.2e-05 0.182#> 499 1.9e-05 0.172#> 500 1.9e-05 0.172#> 501 1.9e-05 0.172#> 502 1.9e-05 0.172#> 503 1.7e-05 0.163#> 504 1.7e-05 0.163#> 505 1.0e-05 0.138#> 506 7.5e-06 0.124#> 507 5.4e-06 0.111#> 508 3.9e-06 0.099#> 509 3.3e-06 0.094#> 510 2.8e-06 0.089#> 511 2.8e-06 0.089#> 512 2.0e-06 0.079
No influential observations.
newdata <- data.frame(Receiving.Points.Won=c(20, 50), won=c(NA, NA))predict(tennis_glm, newdata, type="response")#> 1 2 #> 0.34 0.93
Interpret the response as the probability of winning if your receiving points was 20, 50.
Generalised linear models are a systematic way to fit different types of response distributions.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |